Trigonometric Identities
Reciprocal identities
Quotient Identities
Co-Function Identities
Pythagorean Identities
Sum and Difference Formulas
Double Angle Formulas
Function | Abbreviation | Description | Trigonometric Identities using Radians |
---|---|---|---|
Sine | sin | ||
Cosine | cos | ||
Tangent | tan | ||
Cotangent | cot | ||
Secant | sec | ||
Cosecant | csc |
Non-permissible values
Sin x/Cos x Cos x cannot be equal to zero
Therefore the non-permissible values of Sin x/Cos x is where Cos x is equal to zero on the unit circle.
Cos x is equal to zero at [ (0,1) 90° π/2 ] And [ (0,-1) 270° 3π/2 ]
general formula for non-permissible values: X ≠ π/2 + πn , n ∈ I
Tan x/Sec x Tan x/Csc x= Sin x/Cos x / 1/Sin x
Cos x cannot be equal to zero
Sin x cannot be equal to zero
Sin x/Cos x Cos x cannot be equal to zero
Therefore the non-permissible values of Sin x/Cos x is where Cos x is equal to zero on the unit circle.
Cos x is equal to zero at [ (0,1) 90° π/2 ] And [ (0,-1) 270° 3π/2 ]
general formula for non-permissible values: X ≠ π/2 + πn , n ∈ I
Tan x/Sec x Tan x/Csc x= Sin x/Cos x / 1/Sin x
Cos x cannot be equal to zero
Sin x cannot be equal to zero
Therefore the non-permissible values of Tan x/Sec x is where cos x and sin x are equal to zero.
Cos x is equal to zero at [ (0,1) 90° π/2 ] And [ (0,-1) 270° 3π/2 ]
Sin x is equal to zero at [ (1,0) 0°, 360° 0,2π ] And [ (-1,0) 180° π ]
Cos x X ≠ π/2 + πn , n ∈ I
Sin x X ≠ πn , n ∈ I
general formula for non-permissible values: X ≠ π/2n , n ∈ I
Exact Trigonometric values for angles
2Sinπ/6cosπ/6 2sin α cos α = sin 2α
α = π/6 2sin α cos α = sin 2π/6
sin 2π/6= sin π/3
sin π/3 Sin 60° Sin= Opp/Hyp
Exact value: = √3 / 2
No comments:
Post a Comment