Thursday, May 2, 2013

Trigonometric Identities



Reciprocal identities

displaymath161

Quotient Identities

displaymath163

Co-Function Identities

displaymath164


Pythagorean Identities

displaymath162


Sum and Difference Formulas


          
          


Double Angle Formulas


align99







FunctionAbbreviationDescriptionTrigonometric Identities using Radians
Sinesin\frac {\textrm{opposite}} {\textrm{hypotenuse}} \sin \theta = \cos \left(\frac{\pi}{2} - \theta \right) = \frac{1}{\csc \theta}
Cosinecos\frac {\textrm{adjacent}} {\textrm{hypotenuse}} \cos \theta = \sin \left(\frac{\pi}{2} - \theta \right) = \frac{1}{\sec \theta}\,
Tangenttan\frac {\textrm{opposite}} {\textrm{adjacent}} \tan \theta = \frac{\sin \theta}{\cos \theta} = \cot \left(\frac{\pi}{2} - \theta \right) = \frac{1}{\cot \theta}
Cotangentcot\frac {\textrm{adjacent}} {\textrm{opposite}} \cot \theta = \frac{\cos \theta}{\sin \theta} = \tan \left(\frac{\pi}{2} - \theta \right) = \frac{1}{\tan \theta}
Secantsec\frac {\textrm{hypotenuse}} {\textrm{adjacent}} \sec \theta = \csc \left(\frac{\pi}{2} - \theta \right) =\frac{1}{\cos \theta}
Cosecantcsc\frac {\textrm{hypotenuse}} {\textrm{opposite}} \csc \theta = \sec \left(\frac{\pi}{2} - \theta \right) =\frac{1}{\sin \theta}
File:Trigonometric functions.svg




Non-permissible values


Sin x/Cos x                     Cos x cannot be equal to zero

Therefore the non-permissible values of Sin x/Cos x is where Cos x is  equal to zero on the unit circle.

Cos x  is equal to zero at        [    (0,1)    90°    π/2     ]        And       [     (0,-1)     270°    3π/2    ]


general formula for non-permissible values:      X  ≠   π/2 +   πn , n  ∈  I

Tan x/Sec x                     Tan x/Csc x=       Sin x/Cos x / 1/Sin x

 Cos x cannot be equal to zero

 Sin x cannot be equal to zero


Therefore the non-permissible values of   Tan x/Sec x   is where cos x and sin x are equal to zero.

Cos x  is equal to zero at        [    (0,1)    90°    π/2     ]        And       [     (0,-1)     270°    3π/2    ]

Sin x  is equal to zero at        [    (1,0)    0°, 360°   0,2π     ]        And       [     (-1,0)     180°    π   ]



Cos x           X  ≠   π/2 +   πn , n  ∈  I

Sin x            X  ≠   π, n  ∈  I

general formula for non-permissible values:          X  ≠   π/2n , n  ∈  I


Exact Trigonometric values for angles


2Sinπ/6cosπ/6                  2sin α cos  α  =   sin 2α


 α π/6           2sin α cos  α =  sin 2π/6

     sin 2π/6= sin π/3 


      sin π/3      Sin 60°                Sin= Opp/Hyp    

 


Exact value:      =    3 / 2