Trigonometric Identities
Reciprocal identities
Quotient Identities
Co-Function Identities
Pythagorean Identities
Sum and Difference Formulas
Double Angle Formulas
| Function | Abbreviation | Description | Trigonometric Identities using Radians | 
|---|---|---|---|
| Sine | sin | ||
| Cosine | cos | ||
| Tangent | tan | ||
| Cotangent | cot | ||
| Secant | sec | ||
| Cosecant | csc | 
					Non-permissible values
Sin x/Cos x Cos x cannot be equal to zero
Therefore the non-permissible values of Sin x/Cos x is where Cos x is equal to zero on the unit circle.
Cos x is equal to zero at [ (0,1) 90° π/2 ] And [ (0,-1) 270° 3π/2 ]
general formula for non-permissible values: X ≠ π/2 + πn , n ∈ I
Tan x/Sec x Tan x/Csc x= Sin x/Cos x / 1/Sin x
Cos x cannot be equal to zero
Sin x cannot be equal to zero
Sin x/Cos x Cos x cannot be equal to zero
Therefore the non-permissible values of Sin x/Cos x is where Cos x is equal to zero on the unit circle.
Cos x is equal to zero at [ (0,1) 90° π/2 ] And [ (0,-1) 270° 3π/2 ]
general formula for non-permissible values: X ≠ π/2 + πn , n ∈ I
Tan x/Sec x Tan x/Csc x= Sin x/Cos x / 1/Sin x
Cos x cannot be equal to zero
Sin x cannot be equal to zero
Therefore the non-permissible values of   Tan x/Sec x   is where cos x and sin x are equal to zero.
Cos x  is equal to zero at        [    (0,1)    90°    π/2     ]        And       [     (0,-1)     270°    3π/2    ]
Sin x  is equal to zero at        [    (1,0)    0°, 360°   0,2π     ]        And       [     (-1,0)     180°    π   ]
Cos x           X  ≠   π/2 +   πn , n  ∈  I
Sin x            X  ≠   πn , n  ∈  I
general formula for non-permissible values:          X  ≠   π/2n , n  ∈  I
Exact Trigonometric values for angles
2Sinπ/6cosπ/6                  2sin α cos  α  =   sin 2α
 α = π/6           2sin α cos  α =  sin 2π/6
     sin 2π/6= sin π/3 
      sin π/3      Sin 60°                Sin= Opp/Hyp    
Exact value:      =    √3 / 2  












